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Abstract ©

We have creawed a diagnostic system for the US Navy to
use in the analysis of the “running health” of helicopter
rotor systems. Although our system is not yet deployed for
real-time in-flight diagnosis, we have successfully analyzed
the data sets of actual helicopter rotor failures supplied by
the US Navy., We discuss both critical techniques
supporting the design of our stochastic diagnostic system as
well as issues related to full deployment.

Our diagnostic system, called DBAYES, is composed of a
logic-based, first-order, and Turing-complete set of
software tools for stochastic modeling. We use this
language for modeling lime-series data supplied by sensors
on the mechanical system. The inference scheme for these
software tocls is based on a variant of Pearl's loopy belief
propagation ajgorithm. Our language contains variables that
can capture general classes of situations, events, and
relationships. A Turing-complete language is able to Teason
about potentially infinite classes and siwsations, similar to
the analysis of Dynamic Bayesian Networks. Since the
inference algorithm is based on a variant of loopy belief
propagation, the language includes the Expectation
Maximization type learning of parameters in the modeled
domain. In this paper we briefly present the theoretical
foundations for our first-order stochastic language and then
demonstraie time-series modeling and leamning in the
context of fault diagnosis.

1. Introduction

This paper presents the results of our efforts in the analysis
of US Navy data from sensors attached to various
components of helicopter rotor systems. We have been
waorking for the past two years in the application of a first-
order stochastic modeling language for this and similar
domains. We feel that a first-order and Turing-complete
stochastic system is appropriate for these tasks since it
supports the creation of general variable based rule
relationships (the expressive power of the first-order
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predicate calculus) as well as supports (with fully
implemented recursion) time-series analysis. This paper
describes these software tools and the methodology used 0
address the real time diagnosis of the time-series data of
the helicopter rotor systezs.

Our research began with NSF support to the third author
for developing tools for diagnosis wusing stochastic
approaches. The result of this research was the creation (in
OCAMLY) of a set of tools for diagnosis and prognosis
(Pless and Luger, 2001, 2003). These stochastic software
tools were both first-order and Turing complete.
Subsequent to that effort the third author was also awarded
SBIR and STTR contracts from the US Navy (through a
small software company in Albuquerque, NM,
Management Sciences, Inc.) to deveiop 2 Tava based
software toolkit for stochastic modeling. As part of this
contract, the US Navy supplied to the authors real-time
sensor data from helicopter rotor systems. The application
of our toolkit to this data is the theme of our paper.

The idea) next step for our current software is to embed it
in the control systems that monitor complex devices. But
this will require further development, including the
application of our algorithms to more data sets and
creating the appropriate software for integrating these
algorithms into existing flight control systemns. This later
task is the primary interest of Management Sciences, Inc,
in supporting our links with the US Navy. :

Section 2 gives a brief overview of the theoretical issues
supporting the development of our logic-based stochastic
modeling language. In Section 3, we present a direct
application of our software to time-series data for the
purpose of fault diagnosis. We show that the fully
recursive nature of our language is ideal for supporting
variants of hidden Markov models doing time-series
analysis.

Because our inference scheme is based on a variant of
Pearl’s loopy belief propagation (Pearl, 1988) it is also
ideally suited for expectation maximization-type learning.
We demonstrate this in fitting parameters to components
of 2 stochastic model. The leaming of model components
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is described in Section 4.

Finally, in Section 5 we present our thoughts on the
research/application issues that remain in this project. The
current Java version of our software is available from the
authors.

2. DBAYES: A logic-based stochastic
modeling language

In this section we briefly describe the formal foundations
of our logic-based stochastic modeling language. We have
extended the Bayesian logic programming apprcach of
Kersting and De Raedt (2000) and have specialized the
Kersting and De Raedt formalism by suggesting that
product distribations are an effective combining rule for
Hom clause heads. We have also extended the Kersting
and De Raedt langnage by adding learnable distributions.
To implement learning, we use a refinement of Pearl's
{1998} loopy belief propagation algorithm for inference.
We have built 2 message passing and cycling - thus the
term loopy - algorithm based on expectation maximization
or EM (Dempster et al., 1977) for estimating the values of
parameters of models built in our system. Further details
of this learning component are presented in Section 4. We
have also added additional utilities to our logic language
incloding second order unification and equality predicates.

A number of researchers have proposed logic-based
representations for stochastic modeling. These first-order
extensions to Bayesian Networks "include probabilistic
logic programs (Ngo and Haddawy, 1997) and relational
probabilistic models (Koller and Pfeffer, 1998; Getoor et
al., 1999). The paper by Kersting and De Raedt (2000}
contains a survey of these logic-based approaches. Another
approach to the representation problem for stochastic
inference is the extension of the usual propositional nodes
for Bayesian inference to the more general language of
first-order logic. Several researchers (Kersting and De
Raedt, 2000; Ngo and Haddawy, 1997, Ng and
Subrahmanian, 1992) have proposed forms of first-order
logic for the representation of probabilistic systems.

Kersting and De Raedt (2000) associate first-order rules
with uncertainty parameters as the basis for creating
Bayesian networks as well as more complex models. In
their paper “Bayesian Logic Programs”, Kersting and De
Raedt extract a kernel for developing probabilistic logic
programs. They replace Hom clauses with conditional
probability formulas. For example, instead of saying that
x is implied by y and =z, thatis, » <- 1y, z they write
that x is conditioned on y and z, or, x|y , z. They then
annotate these conditional expressions with the appropriate
probability distributions.

Qur research also follows Kersting and De Raedt (2000) as
to the basic representation structure of the language. A

sentence in the language is of the form:

head | body:, bodyz, ...,
[pi, P2, - . ., DPul

body, =

The size of the conditional probability table (m) at the end
of the sentence is equal to the arity (number of states) of
the head times the product of the arities of the terms in the
body. The probabilities are naturally indexed over the
states of the head and the clauses in the body, but are
shown with a single index for simplicity. For example,
suppose x 18 a predicate that is valued over
{red ,green , blue} andy isboolean. P (x]y) is
defined by the sentence

x|y =[[0.1,0.2,0.71,00.3,0.3,0.4])

here shown with the structure over the states of x and v.
Terms (such as x and y) can be full predicates with
structure and contain PROLOG style variables. For
example, the sentence a{X)=[0.5,0.5] indicates
that a is (universally) equally likely to have either one of
two values,

If we want a query to be able to unify with more than one
rule head, some form of combining function is required.
Kersting and De Raedt (2000) allow for general combining
functions, while the Loopy Logic language restricts this
combining function to one that is simple, useful, and works
well with the selected inference algorithm. Our choice for
combining sentences is the product distribution. For
example, suppose there are two simaple rules (facts) about
some Boolean predicate a, and one says that a is true
with probability 0.4, the other says it is true with
probability 0.7. The resulting probability for a 1s
proportional to the product of the two. Thus, a is txue
proportional to 0.4 * 0.7 and a is false proportional to
0.6 * 0.3. Normalizing, a is true with probability of
about 0.61. Thus the overall distribution defined by a
database in the language is the normalized product of the
distributions defined for all of its sentences.

One advantage of using this product rule for defining the
resulting distribution is that observations and probabilistic
rules are now handled uniformly. An observation is
represented by a simple fact with a probability of 1.0 for
the variable to take the observed value. Thus a fact is
simply a Hom clause with no body and a singular
probability distribution, that is, all the state probabilities
are zero except for a single state.

Our software also supports Boolean equality predicates.
These are denoted by angle brackets <> . For example, if
the predicate a (n) is defined over the domain {xed,
green,blue} then <a(n)=green> I3 a variable
over {true, false} with the obvious distribution.
That is, the predicate is true with the same probability
thata(n) isgreen andis false otherwise.
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As we can see, the raw data is intractable, noisy and
unsuitable for any sort of mathematical or logical analysis.
In order to get a better understanding on the nature of the
data, it proved necessary and sufficient to look at its
frequency characteristics. The frequency spectrum of the
data was calculated using the Fast Fourier Transform
algorithm. The data in this form proved more tractable as
is shown in Figure 3.
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Figure 2. A zoomed in view of the time series data
presented in Figure I,
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Figure 3. A “frequency domain” representation of the
data presented in Figure I computed using the Fast
Fourier Transform.

To get rid of some artifacts which were due to noise in the
frequency domain representation of the data and to
consolidate information over time we computed the mean
of several such windows. These processed datasets were
considered observations relevant to the consequent
modeling process.

The mathematical correlation between observations was
used as a metric of distance. Using this metric, correlation
plots were computed between half the observations that
were chosen as training data. A significant and steep drop
in correlation was noticed at samples bunched around a
particular point in time. This point was around two thirds
of the total observation time away from the first sample.
Assuming that the center point of this lack of correlation

was the point that the fault characteristics peaked, the time-
line was split into three regions: Safe, Unsafe and Faulted.

Using these sets of correlation plots as our “learned”
model about the data and fault process, the other half of
the data, the test set, was correlated with the training
dataset. The best fit of these new curves to the traiming
correlation curves were computed using the Least Mean
Square metric. With this method the test data was
successfully classified as Safe, Unsafe or Faulty.

Dynamic Bayesian Networks (DBNs) (Dagum et al.,, 1992)
can be used as 2 tool to model dynamic systems. More
expressive than hidden Markov models (HMM) and
Kalman filter Models (KFM), they can be used 1o represent
other stochastic graphical models in Artificial Intelligence
and Machine Learning.

For our model, in order to build a more robust, versatile
and generic model than the above correlation-classification
technique, we decided to explore the use of variants of the
hidden Markov model (HIMM). The auto regressive hidden
Markov model (AR-HMM) (Tuang, 1984} proved suitabie
for this purpose. The AR-HMM incorporates a causality
Jink between consequent observations in time rather than
just between states and state-observation — pairs.
Computationally, it provides an additional path of
inference from observation of hidden state. Figure 4 shows
the causality between states and observations at two
consecutive instances of time (t and t-1).

Figure 4. An Auto-regressive HMM where X, is the state
at time 1, Y, the observation of an emit value at time t. The
arrows denote the causal relationships

The blank circles, labeled X are the hidden states of the
system that could be one of {Safe, Unsafe, Fanlted}. The
shaded circles labeled Y are the observations. Before we
apply the algorithm to real time data we evaluate the
distribution P { |X) of expected frequency signatures
corresponding to the states ifom a state-labeled dataset.
Note that U = w1 ... tx is the set of observations that have
peen recorded while training the system. Say for example,
if u; through . were observed when the system gradually
went from safe to faulty we would expect P(u, | X = safe)



10 be much higher than P(u| X = safe). See Figure 5 for a
graphical representation of this probability.
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Figure 5 Probability distributions for safe, unsafe and
Sfaulty states.

The cauvsal relationships in the AR-HMM are represented
as probability distributions governed by the following
equations.

P(Y[ = }’rEX: = i,YI«I = YI‘I) =
P(Ytz Y'iX‘= 1) # P(Y:= yter.l - y:-l) (l)

In this design, the probability of an observation given a
state is the probability of observing the discrete prior that
is closest to the current observation, penalized by the
distance between the current observation and the prior.

PMi=nX=1) =
max(abs(corrcoef (y.,u))) *Pluc [Xi = i) (2)

Further, the probability of an observation at time t given
another particular observation at time t-1 is the probability
of the most similar transition among the priors penalized
by the distance between the current observation and the
observation of the previous time step.

P(Y: =% {Yu = yu1) = abs{corrcoef (y:,¥%0)) *
((# of w. 1o u, transitions)/ (# of u., observations))
where, u, = argrax,; (abs(corrcoef (y:,u)) (3)

Note that y; is a continuous variable and potentially infinite
in range but we limit it to a tractable set of finite
signatures, U, by replacing it by the uy with which it
correlates best.

The relationship governing the learnable distributions is
expressed as follows:

x <- {safe, unsafe, faultyl .
yis{¥N)) | x(s{w)) = LD1.
vi(s(N}} | y(N)) = LD2.

Preprocessing the data and computing the correlation

coefficients off-line, we tested the above technique on a
training set of a single seeded fault occurrence taking the
system from safe to faulty. Although individual predictions
per time slice matched the expected results only 80% of
the time, when the predicted states were smoothed over a
period of neighboring time samples, the system predicted
states of the faulting system with close to 100% accuracy.

4. Learning in the context of an AR-HMM

In this section we demonstrate how parameter learning can
be used in the context of the AR-HMM. Basically, leamning
is achieved by adding learnable distributions to Kersting
and De Raedt’s language (Pless and Luger, 2002; Pless
2003). The learning message passing algorithm is based on
the concept of Expectation Maximization (EM) to estimate
the learned parameters in the general case of models built
in the system (Chakrabarti, 2005).

The widespread applicability of the EM algorithm was first
discussed by Dempster, Laird, and Rubin (1977). This
algorithm estimates learning parameters iteratively,
starting with an initial guess. Each iteration of the
algorithm consists of an expectation step (E step) and a
maximization step (M step). In the expectation step, the
distributions for the unobserved variables are based on
their known value and the current estimate of the unknown
parameters. The maximization step re-estimates the
parameters. These two steps continue until they reach their
maximum likelihood with the assumption that the
distribution found in the expectation step is correct. As
shown by Dempster, et al. (1977), each EM iteration
mcreases this likelihood, unless some local maximum has
already been reached.

Example Three: Parameter fiiting using expectation
maximizarion.

We return again to the OCAML representation for a simple
example of parameter fittng or leaming. The
representational form for a statement indicating a learnable
distribution is a (X) = A. The “A” indicates that the
distribution for = (%) is to be fitted. The data over which
the learning takes place is obtained from the facts and rales
presented in the database itself. To specify an observation,
the user adds a fact (or rule refation) to the database in
which the variable x is bound. For example, suppose, for
the rule defined above, the set of five observations (the
bindings for x) are added to produce the following
database:

a(X)=A.
a{dl)=true.
a{d2)=false.
a(d3}=false.
a(ddy=true.
a(dsy=true.



In this case there is a single leamable distribution and five
completely observed data points. The resulting
distribution for a will be true 60% of the time and false
40% of the time. In this case the variables at each data
point are completely determined.

In general, this is not necessarily required, since there may
be learnable distributions for which there are no direct
observations. But a distribution can be inferred in the other
cases and used to estimate the value of the adjustable
parameter. In essence, this provides the basis for an
expectation maximization (Mayraz and Hinton 2000) style
algorithm for simultaneously inferring distributions and
estimating their learnable parameters. Learning can also be
applied to conditional probability tables, not just to
variables with simple prior distributions. Furthermore,
learnable distributions can be parameterized with variables
just as any other logic term. For example, one mughi have
arule:

{rain{X,City) iseason(X,City)=
R{City}}

This rule indicates that the probability distribution for rain
depends on the season and varies by city.

To summarize, EM learning takes the form of parameter
fiting. A distribution can be used to estimate the value of
the learnable parameter. Using our DBAYES algorithm,
learning can also be applied to conditional probability
tables, not just to variables with simple prior distributions.
Learnable distributions can be * parameterized with
variables just as any other logic term.

In the AR-HMM, we learn the transition probabilities
between the 3 states: safe, unsafe and faulted. This
distribution may not be known at the beginning of
experimental testing. Hence, we can model this
distribution as a learnable distribution in which we
approximate the transition probability by observing a large
set of the traiing data.

A more complete specification of the OCAML based
representation for learning and the loopy belief
propagation inference systern may be found in Pless and
Luger (2001, 2003).

5. Summary and conclusions

We have created a logic-based stochastic modeling
language that has the capability to handle complex
situations with repetitive structure. Since the language is
recursive, it is possible to build and apalyze models that
are represented by a potentially infinite set of databases.
The US Navy has provided us with sensor data from
helicopter rotor systems that have this property. Modeling
potentially infinite databases means that we can efficiently

represent time-series processes and various different forms
of Mazkov models.

A well-known and effective inference algorithm, loopy
belief propagation (Pearl, 1988), supports inference in our
language. Within this first-order logic-based stochastic
language the combination rule for complex goal support is
the product distribution. Finally, a form of EM parameter
learning is supported mnaturally - within this loeping
inference framework. From a larger perspective, each type
of logic (deductive, abductive, and inductive} can be
mapped to elements of our declarative stochastic language:
The ability to represent rules and chains of rules is
equivalent to deductive reasoning. Probabilistic inference,
particularly from symptoms to causes, represents an
example of abductive inference, and learning through
fitting parameters to known data sets, is a form of
induction.

In this paper we demonstrated a actual application of fault
diagnosis in complex mechanical systems. We have
modeled raw time series data as an AR-HMM. We used
recursion within our inference scheme to represent the
AR-HMM as well to infer and calculate the iransition
probabilities between states. We used this knowledge to
infer the probability of future faults. We achieved a high
accuracy in this process. We also demonstrated how Loopy
Logic can perform learning in the context of the AR-
HMM. Thus, this application demonstrates the power of a
first-order stochastic system to represent and reason with
complex models and potentially infinite time-series data.

An ongoing effort in this research is to integrate into the
language the semantics of making calls to external
computing tools like MATLAB or other library utilities by
providing syntactical support in the language itseif. When
dealing with complex and intractable data formats, like
time series data and RGB images, it becomes cumbersome
to perform mathematical transforms or computations
using the first-order system itself. At these junctures, we
find it wseful to outsource this job to an off-the-shelf
syster like MATLAB or some other suitable library for
operations like correlation, data format translasion, and
normalization. The first-order systern can deal well with
discrete or multinomial data but is not suited to deal with
real valued or non-discrete data. The call and return of
such external computation should be seamless and
somewhat transparent to the modeler.

Another direction for developing our stochastic modeling
language is to extend it to include continuous random
variables. We also plan to extend learning from parameter
fitting to full medel induciion. Getoor et al. (2001} and
Segal et al. (2001) consider model induction in the context
of more traditional Bayesian Belief Networks and
Angelopoulos and Cussens (2001) and Cussens (2001) in
the area of Constraint Logic Programming. Finally, the
Inductive Logic Programming community (Muggleton,
1994) also addressed the leaming of structure with
declarative stochastic representations. We plan on taking a
combination of these approaches.
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